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Abstract  The main purpose of this paper is to give a reasonably comprehensive discussion of what is commonly 
referred to as the bifurcation analysis applied to an indirect field oriented control of induction machines (IFOC). In 
the current work, we study the appearance of self-sustained oscillations in AC drives and compute their 
corresponding stability margins. As the dynamics is explored, a transition mode to chaotic states via codimension 
one Hopf bifurcations is detected. Based on qualitative approach, investigations of both parametric and phase plane 
singularities in IFOC induction motor lead to put into evidence equilibrium points and complex oscillatory 
phenomena such as limit cycles and chaotic behaviors. Furthermore we found out the bifurcation sets and the 
attraction basins related to such nonlinear phenomena. Bifurcations originated by system and control parameter 
fluctuations may lead to stability loss. The adequate remedy is to keep the parameters and the state variables inside 
the well known normal operating domains computed in this paper. It is worth noting that a rational use of the main 
analysis tools such as bifurcation sets and attraction basins permits to cancel non desired oscillations and limit cycles 
by choosing the appropriate initializations leading to the desired behavior. The interpretation of these results 
contributes to widen the understanding of the mechanism of certain types of singularities and the stability domain 
boundaries either in phase space or in parameter space and to demonstrate the suitability of bifurcation theory to 
solve stability problems in electric machines. 
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1. Introduction 
Nonlinear dynamics may provide understanding and 

knowledge about systems which demonstrate complicated 
and irregular behavior. The general purpose of this paper 
is to identify generic bifurcations (as Saddle-node, Hopf 
and Bogdanov-Taken bifurcation, etc.) in an induction 
motor submitted to an Indirect Field-oriented control. 
Bifurcation is a dynamic behavior associated with loss of 
stability that can be caused by the errors in the estimate of 
the time constant. At the bifurcation point, existence and 
uniqueness of solutions is not guaranteed and a change in 
the number of solutions occurs. 

Field oriented controllers (FOC) are frequently used as 
nonlinear controllers for induction machines, perform 
asymptotic linearization, and decoupling [1]. Stability of 
FOC is generally investigated regarding errors in the 
estimate of the rotor resistance. It has been previously 
shown that the speed control of induction motors through 
indirect Field-Oriented Control (IFOC) is globally 
asymptotically stable for any constant load torque. An 
analysis of saddle-node and Hopf bifurcations in IFOC 

drives due to errors in the estimate of the rotor time 
constant provides a guideline for setting the gains of PI 
speed controller in order to avoid Hopf bifurcation [2]. An 
appropriate setting of the PI speed loop controller permits 
to keep the bifurcations far enough from the operating 
conditions in the parameter space [3]. Recently, the 
qualitative methods became useful tools of analysis in the 
investigation of the power systems. The understanding of 
mechanism responses of such nonlinear dynamic system is 
based on the identification of both singularities of the 
phase plane (equilibrium, limit cycles, attraction basins, 
etc.) and singularities of the parameter plane (bifurcations, 
chaos, etc.) [4]. It has been proven the occurrence of either 
codimension one (saddle node and Hopf bifurcation) and 
codimension two bifurcation (Bogdanov-Takens or zero-
Hopf bifurcation) in IFOC induction motors [5,6,7]. Other 
studies were concerned with the cancellation of sustained 
oscillations which are, in general undesirable. 

Some of such studies proposed an 'oscillation killer' 
dedicated to adjust the system and control parameters so 
that one can get rid of limit cycles [8]. In [9], chaotic 
rotation can promote efficiency or improve dynamic 
characteristics of drives. Thus chaotic behavior, obtained 
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for some ranges of load torque and certain PI speed 
controller settings, is a desirable behavior in this case. An 
adequate combination between analytical and numerical 
tools may provide a deep understanding of some 
nontrivial dynamical behavior related to bifurcation 
phenomena in a self-sustained oscillator [10]. 

The robustness margins for IFOC of induction motors 
can be deduced from the analysis of the bifurcation 
structures identified in parameter plane [11]. Since the 
self-sustained oscillations in IFOC for induction motors 
may be due to the appearance of a Hopf bifurcation [12], 
an exhaustive study of the bifurcation structures is mainly 
devoted to preserve the local stability of the desired 
equilibrium point. The stability test given in [13] based on 
existence of quadratic Lyapunov functions may lead to a 
largest global asymptotic stability margins for IFOC 
induction motors. The robustness margins with respect to 
rotor time constant mismatches are obtained by iteratively 
applying the stability test for different PI settings. 

The stabilizing effect of the harmonic injection revealed 
in [14], had led to a couple of advantages, namely torque 
enhancement and a greater robustness. The bifurcation 
analysis of a five-phase induction-motor drive submitted 
to a third harmonic injection allows undesirable nonlinear 
phenomena to be circumvented to some extent for a wide 
range of estimation errors. Power system stability analysis 
is the common framework of studies cited above. The 
accurate computation of stability margins lead to design 
the adequate controllers which are able to avoid 
undesirable behaviors and to bring the system to a stable 
steady state. In this paper we proposed some steps toward 
the development of stability analysis tools applied to 
IFOC induction motors. 

In power systems, there is an immense need for 
exhaustive studies of parametric and phase plane 
singularities in order to assist the design of sufficient 
controllers. Thus we investigate the computation of 
attraction basins and the main features that may 
characterize the IFOC induction machines. Namely the 
transition modes to unwanted chaotic oscillations and the 
control bifurcations due mainly to controller's parameter 
variation. 

Section 2 devotes to the equation model description of 
IFOC induction motor and some general reminders. 
Section 3 presents some features of multistability 
properties illustrated for both of equilibria and limit cycles. 
Section 4 provides further insight on the occurrence of 
some generic bifurcations of codimension one and two. A 
transition mode from Hopf bifurcation to chaotic orbits is 
described in section 5. 

2. Plant Equation Description/General 
Remember 

An autonomous system is generally described by a 
system of ordinary differential equations (ODEs) of the 
form: 

 ( , ) ; , ,n pdX f X t IR X IR IR
dt

λ λ= ∈ ∈ ∈  (1) 

Where f  is smooth. A bifurcation occurs at parameter 

0λ λ=  if, crossing this value, the system behavior 

undergoes an abrupt change affecting the number and/or 
the stability of equilibria or periodic orbits of f . 

As mentioned in previous papers [15], a two-parameter 
plane can be considered as made up of sheets (foliated 
representation), each one being associated with a well 
defined behavior such as a fixed point, or an equilibrium 
or a periodic orbit. 

2.1. System Equations of Induction Machine 
The equation model of indirect field-oriented control of 

induction motor can be described by the following 4th-
order nonlinear autonomous system: 
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 (2) 

1x , 2x , 3x  and 4x  are the variable states, where: 

1x  and 2x  denote the direct and the quadratic 
component of the rotor flux, respectively. 3x  being the 
difference between reference and the real mechanical 
speed. 4x  present’s the quadratic component of the stator 
current results from the outer loop PI.. k  is the ratio of the 
rotor time constant rτ  to its estimate eτ  and 0

2u is a 
design parameter. pk  and ik are the proportional and the 
integral gains, respectively. 

1c , 2c , 3c  and 4c  are constants, where:  
1 1

1 .r r rc L Rτ − −= =  is the rotor flux time constant. 
1

2 . .m rc L τ −=  
1

3 .c rc f τ −= , cf  is the friction constant. 
1

4 . .pc n J −=  

2.2. General Remember 
The parameterized nonlinear differential system (2) can 

present multiple equilibria as a single parameter varies. A 
local bifurcation at an equilibrium happens when some 
eigenvalues of the parameterized linear approximating 
differential equation cross some critical values such us the 
origin or the imaginary axis. Self-sustained oscillations in 
IFOC of induction motors can be originated by a 
codimension one bifurcation namely the Hopf bifurcation 
(H). Such kind of bifurcation can be computed from 
differential system (2), when a pair of complex conjugate 
eigenvalues among the eigenvalues set of the associate 
linearized system change from negative to positive real 
parts or vice versa. Therefore the Hopf bifurcation results 
from the transversal crossing of the imaginary axis by the 
pair of complex conjugate eigenvalues. Such bifurcation is 
said to be supercritical if the periodic branch is initially 
stable and subcritical if the periodic branch is initially 
unstable. The singularities of the phase plane are the 
solutions of 4th order autonomous differential system 
describing the IFOC induction motor (Equilibrium points, 
limit cycles, chaotic orbits...), each solution involves four 
eigenvalues describing its stability. A Saddle-node 
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bifurcation (or Fold), or a limit point (LP) is a 
codimension one bifurcation which occurs when a single 
eigenvalue is equal to zero. 

Some codimension two bifurcation points are 
considered in this paper such as the cuspidal point (CP), 
the Bogdanov-Takens bifurcation (BT) and the 
Generalized Hopf bifurcation (GH). 

In a two parameter plane, a Bogdanov-Takens 
bifurcation happens for the assumption of an algebraically 
double zero eigenvalue, therefore, in a ( , )Lk T -plane, a 
Bogdanov-Takens (BT) bifurcation occurs when an 
equilibrium point has a zero eigenvalue of multiplicity two. 
In the neighborhood of such bifurcation point, the system 
has at most two equilibria (a saddle and a non saddle) and 
a limit cycle. The limit cycle results from a non saddle 
equilibrium which undergoes an Andronov-Hopf 
bifurcation. Numerically, the normal Lyapunov exponents 
calculated in the Hopf bifurcation point are negative 
which means that these periodic orbits are born stable [16]. 
The saddle and nonsaddle equilibrium collide and 
disappear via a saddle-node bifurcation. This cycle 
degenerates into an orbit homoclinic to the saddle and 
disappears via a saddle homoclinic bifurcation. 

A generalized Hopf (GH) bifurcation or Bautin 
bifurcation appears when a critical equilibrium has a pair 
of purely imaginary eigenvalues. The singular curves of 
the parameter plane corresponding to codimension-1 
bifurcations may contain singular points of higher 
codimension [4]. The simplest one located on a fold curve 
has the codimension-2, a fold cusp. It is the meeting point 
of two fold arcs. A Bogdanov-Takens bifurcation point 
(BT) will be identified on a saddle-node bifurcation curve, 
and a generalized Hopf bifurcation (GH) on a Hopf 
bifurcation curve. 

3. Multistability in IFOC Induction 
Motor 

Multistability is a major property of non linear 
dynamical systems and means the coexistence of more 
than one stable behaviour for the same parameters set and 
for different initial conditions. Solving the differential 
system equation (2), the trajectory in state space will head 
for some final attracting region, or regions, which might 
be a point, curve, area, and so forth. Such an object is 
called the attractor for the system. Really the nonunicity of 
these attractors led primarily to characterize each stable 

state by a domain of stability or an attraction basin. These 
domains include one or more open sets of points in the 
phase space corresponding to all the initial conditions 
combinations for which the solutions of the system (2) 
converge towards such stable state. Thus, an attraction 
basin is a stability domain (D) of an attractive set (or 
attractor) having a border (F). The analysis of the 
properties of stability domain (D) of these attractors and 
its border (F) (Connectivity, complex shape, fractal…) is 
used in a lot of works as an important tool in studying the 
behaviour of a dynamic electrical circuit. We let's up 
consider a geometrical transformation T  associated to the 
differential system (2). Theoretically, T  can be a 
diffeomorphism (invertible) or an endomorphism (non 
unicity of 1T − . A basin of attraction is connex if the 
punctual transformation T  is invertible. Whereas, in the 
case of a noninvertible transformation (or endomorphism) 
[17,18], the attraction basin can be made of a finite or 
infinite number of non connected areas, or a single 
connected area but bored by holes (basin multiply 
connected) [4]. 

Since the parameter space is foliated, two Saddle-node 
bifurcation curves continued from two successive limit 
point bifurcation are generally the boundaries of three 
different sheets (two stable sheets related through a third 
unstable one) [19]. This type of bifurcation feature 
exhibits phenomena of jump and hysteresis. Furthermore, 
the Double-Hopf bifurcation occurrence leads generally to 
the coexistence of two periodic solutions, also called limit 
cycles. Reciprocally, it is possible but not rigorously 
proven that the coexistence of a pair of equilibrium points 
or limit cycles under parameter variation is related to a 
limit point or to double-Hopf bifurcation appearance, 
respectively. 

3.1. Multistability of Equilibrium Point 
For the parameters 4,k =  0.4,pk =  1ik =  and 0.5LT =  

two different equilibrium points are identified :The first 
one is ( )* * * *

10 20 30 40( , , , ) 0.2764, 0.1383,0,1.309 ,x x x x = −  
solution of the differential system (2) for the 
initial conditions set ( )10 20 30 40( , , , ) 1,1,0.1,0.1x x x x =  

whereas ( )* * * *
10 20 30 40( , , , ) 0.7236, 0.3618,0,0.191x x x x = −  

is the second one, and similarly a solution of (2) 
for the following initial conditions set 

( )10 20 30 40( , , , ) 1, 1,0.1,0.1 .x x x x = −  

 

Figure 1. Equilibrium Point EP1 in phase planes (x1, x2) and (x3, x4) 
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Figure 2. Equilibrium Point EP2 in phase planes (x1, x2) and (x3, x4) 

The phase trajectories converging to equilibrium points 
are given in both of phase planes (x1, x2) and (x3, x4) see 
Figure 1 and Figure 2. 

For more complete characterization of each of the 
equilibrium points one can compute, in phase planes 

1 2( , )x x  and 3 4( , )x x , the stability domains which are the 
sets of initial conditions leading to one of such equilibria, 
such domains are called attraction basins and can be 
connected or not or fractal in some cases. The attraction 
basins of the two equilibrium points in phase planes 

1 2( , )x x  or 3 4( , )x x are given in Figure 3 and Figure 4 
respectively. The knowledge of the initial conditions sets 
leading to such or such behaviour enables to maintain the 
state variable values in appropriate ranges so that we 
obtain always the desired system behaviour. 

 
Figure 3. Attraction basins of Equilibria EP1 and EP2 in (x1, x2) 

 
Figure 4. Attraction basins of Equilibria EP1 and EP2 in (x3, x4) 

According to the Figure 3 and Figure 4, the stability 
domains of the two equilibrium points are apparently 
connected and scrolled around each other, besides the 
attraction basin of the equilibrium point EP2 are larger 
than the EP1’s one in phase planes 3 4( , )x x  

3.2. Multistability of Limit Cycles 
In Figure 5 both of the red and the blue limit cycles 

coexist for the parameters 0.02017;k =  0.15;pk =  

1.01ik =  and 10.1,LT =  but for d ifferent  ini t ia l 

condit ions sets  ( )10 20 30 40( , , , ) 0.19,0.5,0,0x x x x =  

and ( )10 20 30 40( , , , ) 2.2,7.5,0.5,7.5x x x x =  respectively. 

 
Figure 5. Limit cycles LC1 and LC2 in phase planes (x1, x2) and (x3, x4) 
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The computation of the two limit cycles attraction 
basins leads to determine two different regions (red and 
blue) in phase planes (x1, x2) and (x3, x4) see Figure 6 and 
Figure 7. 

 

Figure 6. Attraction basins of Limit cycles LC1 and LC2 in (x1, x2) 

 

Figure 7. Attraction basins of Limit cycles LC1 and LC2 in (x3, x4) 

It is obvious to conclude that there is no other (third) 
behaviour else than the well defined limit cycles in the 
considered regions of the phase planes mentioned above. 

4. Bifurcation Sets 

4.1. Hopf Bifurcation Detection 
 For a load torque value 10,LT =  the phase trajectories 

undergo two important qualitative changes under the 
variation of the parameter k. For k = 0.1, Figure 8a 
presents a limit cycle illustrated by two closed trajectories 
in phase planes (x1, x2) and (x3, x4). The phase portrait in 
(x1, x2) presents an auto-intersection which disappears for 
k = 0.17 as shown in Figure 8b, this is mainly due to the 
state variables spectral composition change. 

Then for k = 0.18 the limit cycle disappears and an 
equilibrium point occurs instead of it see Figure 8c. One 
can guess the existence of a Hopf bifurcation for 0.17 < k 
< 0.18 which can be computed easily using an adequate 
continuation program. 

The Hopf bifurcation phenomenon, being one of the 
possible reasons for the oscillatory behaviour, is an abrupt 
qualitative change that can be accompanied by 
a ’quantitative’ change namely the spectral reorganization 
of the oscillating state variables. The spectral analysis of 
periodic solutions, by means of Fourier Transform, was 
employed in [15] to characterize a succession of saddle-
node bifurcation in a parameter plane. Thus, the spectral 
approach applied to periodic solutions in non autonomous 
systems may be extended to limit cycles in autonomous 
case. 

 

Figure 8. Hopf Bifurcation: phase trajectories in phase planes (x1, x2) and (x3, x4). For kp = 0.4, ki = 1 and TL = 0.5. (a) k = 0.1, (b ) k = 0.17, (c) k = 
0.18 
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4.2. Limit Point and Hopf Bifurcation Point 
Starting from a located initial equilibrium or a 

periodic orbit, numerical continuation is devoted to 
follow such special behaviour as a single active 
parameter varies. The starting point is an equilibrium 
point ( )* * * *

10 20 30 40( , , , ) 0.2764, 0.138, 0,1.31x x x x = −  computed for 
the parameters k = 4, kp = .4, ki = 1 and TL = 0.5, a 
continuation method permits to obtain the evolution of x1 
versus the values of k (see Figure 9). 

Three singularities are obtained on such curve: two 
Hopf bifurcation points (Ns) and a limit point F 
(Saddle-node bifurcation or Fold). The Saddle-node 
bifurcation possesses has one of its eigenvalue equal to 
zero and the following coordinates in phase space: 

( )10 20 30 40( , , , ) 0.34495, 0.21835,0,0.8165x x x x = −  and 
the corresponding eigenvalues are: (−4.0652 
+i12.01,−4.0652− i12.0101,−0.0075,−4.73256e − 005). 
The two neutral saddles have the following 
coordinates: ( )10 20 30 40( , , , ) 0.35572, 0.23302, 0, 0.75052x x x x = −  
with the associates eigenvalues: 
(−4.07115+i11.0785,−4.06523−i11.0785,−0.17818, 
0.17818) and ( )10 20 30 40( , , , ) 0.43023, 0.35261, 0, 0.34257x x x x = −  
with the eigenvalues (−4.08605+ i6.62942,−4.06523 − 
i6.62942,−0.57292, 0.57292). 

 

Figure 9. Limit point and Neutral Saddle Points 

The three singularities detected in this section are to be 
used as starting points to trace the bifurcation curves in a 
two parameter plane chosen here as (k, TL)-plane 
depending mainly on the rotor resistor and the rotor time 
constant. 

4.3. Cusp Point and Bogdanov-takens 
Bifurcation 

The continuation of the limit point (LP) detected in 
previous section leads to trace a saddle-node bifurcation 
curve shown in Fig.10. Such curve includes two branches 
joining in a codimension two bifurcation points, namely 
cuspidal point (CP) having the following phase space 
coordinates: ( )10 20 30 40( , , , ) 0.5, 0.288675, 0.0, 0.57735 .x x x x = −  

Besides, such curve presents another codimension two 
bifurcation in ( )10 20 30 40( , , , ) 0.265302, 0.18176, 0.0, 0.890591 ,x x x x = −  

having two eigenvalues equals to zero and known as 
Bogdanov-Taken bifurcation (BT). Then, using the Hopf 
bifurcation points, met in the same continuation path of 
the equilibrium point as the limit point (LP) in previous 
section, we obtain the Hopf bifurcation curve in (k, TL) - 
plane, which is seemingly enclosed in the saddle-node 
bifurcation curve as in Figure 11. 

 
 

 
Figure 10. Saddle-node bifurcation including a Cusp point and a 
Bogdanov-Taken bifurcation 

 

Figure 11. Fold and Hopf bifurcation curves in (k, TL)-plane 

The left branches of the two different bifurcation curves 
seem to be merged together but are not really. 
Performing several ’zooms’ of this part permits to 
realize that there is no intersections between such 
bifurcation curves, therefore the Hopf bifurcation 
curve is completely contained inside the quasi-lip 
structure. Varying rotor time constant TL from 0 to 
1.1, the continuation of an equilibrium point 

( )* * * *
10 20 30 40( , , , ) 0.7236,  0.3618, 0, 0.191x x x x = −  computed 

for the parameters k = 4, kp = .4, ki = 1 and TL = 0.5 is 
illustrated in Figure 12. Such curve includes two limit 
points F1 and F2 and two Hopf bifurcation points H1 and 
H2, these bifurcation points lead to the same results 
obtained above and illustrate the fact that the two saddle-
node bifurcation curves are the junction of three different 
sheets, and the Hopf bifurcation is located on the inner 
sheet between the upper and the lower ones. 
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Figure 12. Limit points and Hopf bifurcation 

4.4. Hopf Bifurcation of PI Controller 
Parameters 

Aiming to study the impact of the PI controller 
parameters (ki and kp) on the bifurcation structure in the (k, 
TL)-parameter plane, a set of Hopf bifurcation curves are 
traced for a small range of load torque values TL in Figure 
13 for different values of kp. These bifurcation curves 
were obtained for (ki = 1). 

 
Figure 13. Values of k corresponding to a Hopf bifurcation vs. TL for 
different values of kp 

For the same range of load torque, a second set of 
bifurcation curves obtained for fixed (kp = 0.1) and for 
certain values of (ki) is given in Figure 14. 

 
Figure 14. Values of k corresponding to a Hopf bifurcation vs. TL for 
different values of ki 

For a larger range of load torque values, another 
set of Hopf bifurcation curves with different shapes 
presenting an extremum computed for different 
values of kp in the same parameter plane (k, TL), see 
Figure 15. 

 

Figure 15. Values of k corresponding to a Hopf bifurcation vs. TL for 
different values of kp and for larger values of TL 

4.5. Hopf Bifurcation Curves for Different 
Value of TL 

In Figure 16, we trace the Hopf bifurcation curve in 
(kp, ki)- plane for TL=2.5-5.5-7.5 and 10. In both cases 
of TL=7.5 and TL=10 a codimension two bifurcation 
point, namely a Generalized Hopf bifurcation is 
detected. 

 

Figure 16. Generalized Hopf bifurcation curves 

Such bifurcation is a control bifurcation because it 
depends on PI controller parameters kp and ki. 

5. Transition Hopf Bifurcation-Chaotic 
Behavior 

The variation of parameter ki from 0.21 to 120 shows 
the appearance of equilibrium points which undergoes a 
Hopf bifurcation in the ki-interval [0.22, 0.3] giving rise to 
a limit cycle. The phase portraits of the limit cycles 
present a cuspidal point around which an oscillating part 
of the trajectory is as important as ki increases. 
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Figure 17. Transition Hopf bifurcation-chaotic behaviour 

We recall that according to previous studies [15,20], 
this phenomenon was related to the important role of 
higher harmonics whose amplitudes become as more 
important as the number of modulations is great. But the 
main result to be emphasized here is that the increasing 
oscillations around the phase trajectory cuspidal point lead 
to a chaotic behaviour as shown in Figure 17. The nature 
of the possible bifurcation scenarios that may occur in ki-
interval [0.3, 75.5], and which exhibit the qualitative 
change seemingly spectral change of behaviours needs to 
be deeply investigated. 

The Figure 17 was obtained for the same initial 
conditions set ( ) ( )10 20 30 40,  ,  ,  0.07, 0.152, 0.953, 0.71 ,x x x x =  
for the parameter values k = 4, kp=.01, TL = .5 and for 
different values of ki. 

6. Conclusion 
Through bifurcation analysis we put into evidence the 

appearance of equilibrium points, limit cycles and chaotic 
behaviours in AC drives with respect to parameters 
mismatches. Moreover, we compute, in phase plane, the 
stability margins of phase singularities (equilibrium points, 
limit cycles) and, consequently, illustrate the multistability 
property. Investigation in different parameter planes had 
led to find out bifurcation structures related to saddle-node, 
Fold and Hopf bifurcations in the IFOC of induction 
motors. It can be observed that the variations of rotor 
parameters (resistor, time constant) and the control 
parameters of the PI controller (ki and kp) can lead to loss 

of stability. Such results provide useful guidelines for the 
setting of tunable parameters keeping all possible 
instabilities far enough from a practical operating cell of 
the parameter space. One transition mode to chaotic states 
via Hopf bifurcation is presented in this paper, other 
modes, specifically, through increasing of higher 
harmonics presence in state variable spectra remain an 
open issue and should be let to further researches. Results 
and comments given in this paper permit to widen the 
understanding of the mechanism of certain types of 
singularities and the stability domain boundaries either in 
phase space or in parameter space and to demonstrate the 
suitability of bifurcation theory to solve stability problems 
in electric machines. 

Nomenclature 

rL   Rotor inductance. 

rR    Rotor resistance. 

mL   Mutual inductance. 

J   Moment of inertia. 

pn   Pole pair number.  

/r r rL Rτ =  Rotor flux time constant.  

pk , ik  The PI controller gains. 

eτ   Estimate of the rotor flux time constant. 
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0
2u   Constant reference for flux magnitude 

LT   Load Torque. 

LP   Limit point or saddle-node bifurcation. 
BT   Bogdanov-Taken bifurcation.  
H   Hopf bifurcation. 
CP   Cusp point. 
LC   Limit cycle. 
GH   Generalized Hopf bifurcation. 
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